【主要学术论文】
28. Yun Bai, Ganglin Tian, Yanfei Kang*, Suling Jia (2023). A hybrid ensemble method with negative correlation learning for regression. Machine Learning 112: 3881–3916. (SCI, JCR Q1)
27. Spyros Makridakis, Fotios Petropoulos, Yanfei Kang* (2023). Large Language Models: Their success and impact. Forecasting 5(3), 536-549.
26. Spyros Makridakis, Fotios Petropoulos, Yanfei Kang* (2023). The Impact of Large Language Models like ChatGPT on Forecasting. Foresight: The International Journal of Applied Forecasting 69:61-62.
25. Xiaoqian Wang, Rob Hyndman, Feng Li, Yanfei Kang* (2022). Forecast combinations: an over 50-year review. International Journal of Forecasting 39(4): 1518-1547. (SSCI, ABS3)
24. Bohan Zhang, Yanfei Kang, Anastasios Panagiotelis, Feng Li (2022). Optimal reconciliation with immutable forecasts. European Journal of Operational Research 308(2): 650-660. (SCI, ABS4)
23. Li Li, Yanfei Kang, Fotios Petropoulos, Feng Li (2022). Feature-based intermittent demand forecast combinations: accuracy and inventory implications. International Journal of Production Research 61(22): 7557-7572,. (SCI, ABS3)
22. Li Li, Yanfei Kang, Feng Li (2022). Bayesian forecast combination using time-varying features. International Journal of Forecasting 39(3): 1187-1302. (SSCI, ABS3)
21. Xiaoqian Wang, Yanfei Kang, Rob Hyndman, Feng Li (2022). Distributed ARIMA models for ultra-long time series. International Journal of Forecasting 39(3): 1163-1184. (SSCI, ABS3)
20. Xixi Li, Fotios Petropoulos, Yanfei Kang* (2022). Improving forecasting by subsampling seasonal time series. International Journal of Production Research 61(3): 976-992. (SCI, ABS3)
19. Petropoulos, F., Apiletti, D., Assimakopoulos, V., Babai, M.Z., Barrow, D.K., Bergmeir, C., Bessa, R.J., Boylan, J.E., Browell, J., Carnevale, C., Castle, J.L., Cirillo, P., Clements, M.P., Cordeiro, C., Cyrino Oliveira, F.L., De Baets, S., Dokumentov, A., Fiszeder, P., Franses, P.H., Gilliland, M., Gönül, M.S., Goodwin, P., Grossi, L., Grushka-Cockayne, Y., Guidolin, M., Guidolin, M., Gunter, U., Guo, X., Guseo, R., Harvey, N., Hendry, D.F., Hollyman, R., Januschowski, T., Jeon, J., Jose, V.R.R., Kang, Y., Koehler, A.B., Kolassa, S., Kourentzes, N., Leva, S., Li, F., Litsiou, K., Makridakis, S., Martinez, A.B., Meeran, S., Modis, T., Nikolopoulos, K., Önkal, D., Paccagnini, A., Panapakidis, I., Pavía, J.M., Pedio, M., Pedregal Tercero, D.J., Pinson, P., Ramos, P., Rapach, D., Reade, J.J., Rostami-Tabar, B., Rubaszek, M., Sermpinis, G., Shang, H.L., Spiliotis, E., Syntetos, A.A., Talagala, P.D., Talagala, T.S., Tashman, L., Thomakos, D., Thorarinsdottir, T., Todini, E., Trapero Arenas, J.R., Wang, X., Winkler, R.L., Yusupova, A., Ziel, Z. (2022). Forecasting: theory and practice. International Journal of Forecasting 38(3): 705-871. (SSCI, ABS3)
18. Yanfei Kang, Wei Cao, Fotios Petropoulos, Feng Li (2021). Forecast with forecasts: Diversity matters. European Journal of Operational Research 301(1): 180-190. (SCI, ABS4)
17. Xixi Li#, Yun Bai#, Yanfei Kang* (2021). Exploring the social influence of Kaggle virtual community on the M5 competition. International Journal of Forecasting 38(4): 1507-1518. (SSCI, ABS3)
16. Evangelos Theodorou#, Shengjie Wang#, Yanfei Kang*, Evangelos Spiliotis, Spyros Makridakis, Vassilios Assimakopoulos (2021). Exploring the representativeness of the M5 competition data, International Journal of Forecasting 38(4): 1500-1506. (SSCI, ABS3)
15. Thiyanga S. Talagala, Feng Li, Yanfei Kang* (2021). FFORMPP: Feature-based forecast model performance prediction, International Journal of Forecasting 38(3): 920-943. (SSCI, ABS3)
14. Kasun Bandara, Hansika Hewamalage, Yuan-Hao Liu, Yanfei Kang, Christoph Bergmeir (2021). Improving the accuracy of global forecasting models using time series data augmentation, Pattern Recognition 120:108148. (SCI)
13. Xiaoqian Wang, Yanfei Kang, Fotios Petropoulos, Feng Li (2021). The uncertainty estimation of feature-based forecast combinations, Journal of the Operational Research Society 73(5): 979-993. (SSCI&SCI, ABS3)
12. Yanfei Kang, Evangelos Spiliotis, Fotios Petropoulos, Nikolaos Athiniotis, Feng Li, Vassilios Assimakopoulo (2020). Déjà vu: A data-centric forecasting approach through time series cross-similarity, Journal of Business Research 132: 719-731. (SSCI, ABS3)
11. Xixi Li, Yanfei Kang, Feng Li (2020). Forecasting with time series imaging, Expert Systems with Applications 160: 113680. (SCI, ABS3)
10. Yanfei Kang, Rob J Hyndman, Feng Li (2020). GRATIS: GeneRAting TIme Series with diverse and controllable characteristics, Statistical Analysis and Data Mining 13(4): 354-376. (SCI)
9. Yitian Chen, Yanfei Kang*, Yixiong Chen, Zizhuo Wang (2020). Probabilistic Forecasting with Temporal Convolutional Neural Network, Neurocomputing 399: 491-501. (SCI)
8. Feng Li, Yanfei Kang* (2018). Improving forecasting performance using covariate-dependent copula models, International Journal of Forecasting 34(3): 456-476. (SSCI, ABS3)
7. Yanfei Kang*, Rob J. Hyndman, Kate Smith-Miles. (2017). Visualising Forecasting Algorithm Performance using Time Series Instance Space. International Journal of Forecasting 33(2): 345–358. (SSCI, ABS3)
6. Yanfei Kang, Danijel Belusic, Kate Smith-Miles. (2015). Classes of Structures in the Stable Atmospheric Boundary Layer. Quarterly Journal of the Royal Meteorological Society 141(691): 2057–2069. (SCI)
5. Yanfei Kang. (2015). Detection, classification and analysis of events in turbulence time series. Bulletin of the Australian Mathematical Society 91(3): 521-522. (SCI)
4. Yanfei Kang, Danijel Belusic, Kate Smith-Miles. (2014). Detecting and classifying events in noisy time series. Journal of the Atmospheric Sciences 71(3): 1090–1104. (SCI)
3. Yanfei Kang, Danijel Belusic, Kate Smith-Miles. (2014). A note on the relationship between turbulent coherent structures and phase correlation. Chaos: An Interdisciplinary Journal of Nonlinear Science 24(2) 023114: 1-6. (SCI)
2. Yanfei Kang, Danijel Belusic, Kate Smith-Miles. (2013). How to extract meaningful shapes from noisy time-series subsequences? In: Proceedings of the 2013 IEEE Symposium on Computational Intelligence and Data Mining (CIDM). IEEE, pp. 65–72. (EI)
1. Yanfei Kang. (2012). Real-time change detection in time series based on growing feature quantization. In: Proceedings of the 2012 International Joint Conference on Neural Networks (IJCNN). IEEE, pp. 1–6. (EI)
【专著】
Li Li, Feng Li and Yanfei Kang* (2023), “Forecasting Large Collections of Time Series: Feature-Based Methods”, In Forecasting with Artificial Intelligence: Theory and Applications. Cham , pp. 251-276. Springer Nature Switzerland.
康雁飞、李丰(2023). 统计计算:方法与实践. 在线版本:https://yanfei.site/docs/statscompbook/.
李丰、康雁飞(2022). 大数据存储与计算. 在线版本:https://yanfei.site/docs/distcompbook/.
【译著】
康雁飞、李丰(2023 译). 预测:方法与实践(第三版)(Hyndman & Athanasopoulos 著. Forecasting: Principles and Practice). 在线版本:http://otexts.com/fpp3cn/.
康雁飞、李丰(2019 译). 预测:方法与实践(第二版)(Hyndman & Athanasopoulos 著. Forecasting: Principles and Practice). 在线版本:http://otexts.com/fppcn/.